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1. INTRODUCTION 

If K is a field, K((x)) will denote the field of formal power series with 
Coefficients in K: f E K((x)) if f = x2, UnXn, U, E K, G = 0 for n < -p, 

p < co. By an algebraic function over K we mean an element of K((x)) which 
is algebraic over the field of rational functions K(x). Thus x112 is not, in our 
terminology, an algebraic function. On the other hand, 

f (?) x” = 2 (;$) (-4)V = (1 - 4&$-1/a 
0 0 

is an algebraic function with respect to any field. If K has characteristic p, 
it is easy to construct numerous explicit examples of algebraic functions. 
For example, f (x) = xr xl is algebraic, since 

f(x) = x ,f(x”) = x + {f(x)>“. 

We are interested in properties of the coefficient sequences of algebraic 
functions. Let us say that a sequence of elements in K, (s}“, is a&ebruic 
ower K if Czco u,xn is an algebraic function in I). If A, is the set of all 
algebraic sequences over K, then A, obviously possesses a K-hear structure, 
as well as a multiplicative structure given by convolution: {un} * {b,) = 
{Ci-m G-b,}. On the other hand A, need not be closed with respect to 
ordinary multiplication: {a,}, {b,} -+ {u,b,}. For example, if K is the field of 
rationals, then the sequence {(F)z} is not algebraic. In fact 

f (2nn)e xn = f (;) 1; I” 
0 0 - 

(2 cos ep de/ xn 

1 = 
I 

de =- 
2n --II (1 - 16x cos2 O)llz ’ 
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which cannot be an algebraic function of X. Indeed, according to [2, p. 621, 
the values of this function are never algebraic unless x is transcendental. 

Our main result is that this phenomenon does not occur for finite fields. 

THEOREM A. If K is a jinite jield, {a,}, {b,} two algebraic sequences over K, 
then {anb,} is again algebraic. 

Let us draw some simple consequences of Theorem A. Suppose we call a 
subset N of the non-negative integers algebraic over K if CneN xn is an 
algebraic function in K((x)). 

COROLLARY 1. If K is a finite Jield, then the family of algebraic subsets 
over K is closed with respect to Jinite unions and intersections. 

COROLLARY 2. If K is jinite, then a sequence {a,,} is algebraic over K if and 
only if a, = 0 for n sufficiently negative, and, for each 6 E K, (n > 0 : a, = b} 
is an algebraic set. 

Corollary 1 is immediate and so is the sufficiency of the condition in 
Corollary 2. To see the necessity, let C a,xn be algebraic, and suppose K has 
q elements in it. Then, by Theorem A, x,” (1 - (a, - b)*-l}xn is algebraic, 
which is the desired result. 

According to Corollary 2, the study of algebraic sequences over a finite 
field reduces to the study of the ring of algebraic sets with respect to the field. 
LetF(q) denote the field with q elements. If a function f tz F(p)((x)) is algebraic 
over F(pm)(x), it is also algebraic over F(p)(x). It follows that the Boolean 
ring RD, of algebraic sets over F(pm) depends only on the characteristic p. 
It would be of interest to determine the rings R, explicitly. Note that finite 
unions of arithmetic progressions are in all R, . It is quite likely that, modulo 
finite sets, these are the only sets common to all the R, . 

2. DIAGONALIZATION OF POWER SERIES 

Letf (x1, x2 ,..., x,) be a formal power series in m variables: 

f (x1 , x2 s***> x,> = C a XnlXna *aa x2, ?aln*...nm 1 2 
%>-P 

Unln,...n E K. (1) 
nl 

We denote by 9f the formal power series in a single variable defined by 

C@f(t) = C a,,...,P. (2) 

9 f will be called the diagonal off. 
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Suppose m = 2 and that K is the field of complex numbers. We can then 

show that if f represents a rational function of two variables, then 9f 
represents an algebraic function. For we have 

9f(t) =&s,,,= 
c 
f (CT+)? (3) 

for E and 1 t 1 sufficiently small so that f (z, UJ) is regular for 1 z / < Q, 
1 w 1 < te-l. Now the integrand is rational, and evaluating it by residues 
clearly leads to an algebraic function of the variable t. 

This argument fails when m > 3. To calculate the diagonal of a rational 
function of 3 variables, we must perform two contour integrations. The 
first leads to an algebraic function of two variables, and the contour integral 
of such an expression with respect to one of the variables is generally a 
transcendental function of the remaining variable. For example, the abelian 
integral 

44 = j, (p _ prg,,1/2 

taken over a contour on the Riemann surface of the algebraic function in the 
integral, cannot depend algebraically on g, . For, the variable g, itself is an 
automorphic function of 7 = w(~J/w(y2)([I]). It is possible to show that (4) 
occurs as the diagonal of a rational function of three variables. 

Nonetheless, for fields of finite characteristic we have 

THEOREM 1. If the groundjeld K has finite characteristic, then the diagonal 
of a rational function of several variables is an algebraic function of one 
variable. 

Proof. If v is an integer vector, v = (n, , n2 ,..., n,), xv will denote the 
monomial x1x:2 *** xtm. We shall say that v is homogeneous if n, = n2 = 
. . . = n, and we denote the common value by c. Notice that if v is homogeneous 
andg = xVf, then 9g(t) = t%f(t). 

Let f be a rational function in m variables, f(x) = P(x)/Q(x), and set 
p = Bf. Clearly it will suffice to prove the theorem (that q~ = 9f is 
algebraic) in case P(x) reduces to a monomial. Now we have 

~(x”/Q@)) = =+“+V‘Q(x)), 

so that if we choose p such that v + p is homogeneous, we see that we can 
reduce the general case to the case: f (x) = &(x)-l. 

Write Q(x) = xusL aVxy, where L is a set of non-negative integer vectors. 
Clearly there is no loss of generality if we take L to be all non-negative integer 
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vectors less than (componentwise) some fixed vector h. Let p denote the 
characteristic of K. We have 

@ 1 
P-l 

a,x” f”-’ = 1 
L 

(5) 

or 

(c i 
P-l 

a# f” =f. 
L 

x*f = xp 1 a$” ( 1 
P-l 

f p = c bYI”,. . .yp_lXY1+~z+..‘+~p-l+~f (x)“. (6) 
L p-1 

The coefficients b are products of the a, . We reduce the exponents in (6) 
modulo p. That is, we write 

Vl + v-2 + *-* + VP-1 + P = P43,~2 ".,Q&P) + p(v1 ,vz, . ..vp-1.p), 

where each component of p is between 0 and p - 1, and 0 is a nonnegative- 

integer vector. Note that 

u < p-+1 + VP + .‘. + vg-1 + P) < p-lpA = A 

so that u EL. 
We now rewrite (6) as 

X”f = c b”lYa...Yr-1XP(Y1.ua.....~~-~.~){~(~~.~*,...Yg--l:B)f (x)}". (7) 

Apply 9 to both sides of (7). In the expansion of (x7f)P the only terms 
appearing are those with exponents divisible by p. To obtain a non-vanishing 
diagonal term in xp{xOff)P, inasmuch as the components of p are between 0 
and p - 1, the vector p must be homogeneous. We then obtain 

qxrf> = c’ b”1”*...yp-~~(~1.8*~~~~g--l.P)~({~(~I.YZ.~~~.Yg-1;P)f(X)}P) 

where c’ indicates that the summation is carried over only a part of the 
original range. 

Let qP(t) = CS(xpf), p EL. We have then shown that for each p in L, there 
is an equation 
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where the cpy are polynomials in t. Now quite generally, if elements ti, 
i = l,..., n from an extension of a field K satisfy a system of equations 
Ei = Cy cijQ, then the & are algebraic over K. This proves the theorem. 

3. CONVERSE OF THEOREM 1 

As a matter of fact, every algebraic function comes about by the diagonaliza- 
tion procedure of the foregoing section. For the complex field this amounts 
to the assertion that every algebraic function in one variable is a contour 
integral of a rational function of two variables: 

p)(z) = 1 R(z, w) dw. 
Y 

(9) 

In fact, if we suppose ~(0) = 0 and that v satisfies the polynomial equation 
P(z, v(z)) = 0, and that, in addition, 0 is an isolated root of P(0, w) = 0, 
then we can determine R(z, w) explicitly as 

R(z, w) = w g (z, w)/P(z, w). (10) 

Expressing (9) in the form (3), we see that we can obtain p)(z) explicitly as 
the diagonal of a rational function of two variables. While this does not 
constitute a proof for fields other than the complex field, it provides us with 
an explicit formula which we may proceed to verify by some other means. 

PROPOSITION 1. If v(x) is an algebraic function over a jinite jield, then 
P)(X) = R(x) + ~~$44, whet-e R( x ) is a rational function, and #(x) is algebraic, 
satisfring an equation of the form 

4l(aJ(x) = 4wPY4 + *** + 4w”“(x) + W), (11) 

where the A+(x) and B(x) are polynomiaLF and A,(x) is not divisible by x. 

Proof. The functions v’, @‘, q@ ,... cannot be linearly independent over 
K(X), so there exists some relationship of the form 

A;(X)pqX) = A;(X)pp*+l(X) $- **- + A;(x)q’+“(x). (12) 

We wish to show that we can take 1 = 0. Assume to the contrary that 1 > 0. 
Then all the powers of IJI occurring in (12) are functions of x*. As a result, 
if xi is a power of x that occurs in some A:(x), and we strike out from each 
AL(x) all the terms x7 for Y f i (mod p), we must still have equality. Dividing 
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the resulting equation by xi, we obtain another identity in which all the 
exponents of x are divisible by p. Now since the ground field is finite, every 
element in K is a pth power, hence we can extract the pth root of the equation 
in question, thus obtaining an equation of the form (12), but with I - 1 in 
the place of 1. 

Thus we may suppose that ‘p satisfies a relationship of the form 

A,“(x)ql(x) = A;(x)q(X) + *-* + A;(X)@(X). (13) 

If A:(x) is not divisible by x we are through. If A;(x) is divisible by x”, write 
v(x) = ~(0) + x$(x), assuming that the power series for v has no negative 
exponents. Clearly, subtracting a rational function R, we may assume that 
this is the case. We then find 

Ai(x)x$(x) = A;(X)XyqX) + -0. + A;(x)xqqx) + B”(x) (14) 

for an appropriate polynomial B”(x). Let s = min(p, Y + 1). Each term 
A;(x)xP ’ is divisible by x8 and so B”(x) is also divisible by x8. We may 
therefore divide (14) by x8 which yields an equation of the same form as (1 l), 
but for which the power of x dividing A,“(x) is, at most x7-l. Iterating this 
procedure we obtain the proposition. 

PROPOSITION 2. Let P(x, y) be a polynomial and q(x) = CT c,x” a function 
in “((2)) Satisjying P(x, v(x)) = 0. If (@/8y)(o, 0) # 0, thm 

v = 9 jY2 g (XY, YMXY, Y)/ - 

Here I( is an arbitrary field. 

Proof. We write P(x, y) = (y - p(x))Q(x, y) with Q a polynomial in y 
whose coefficients are power series in X. We have Q(0, 0) # 0, since ~(0) = 0. 
Then 

g+>Y) = y -1v(x) + $ z (x9 Y)- 

We now verify Proposition 2 by replacing x by xy in (15), multiplying by ya 
and forming the diagonal. We have 
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On the other hand, since Q(0, 0) # 0, the second term in (15) leads to 
a power series in xy and y. When we now multiply this by y2, we find that 
there are no diagonal terms whatever. This proves the proposition. 

THEOREM 2. If p’( ) x is an algebraic function over a jinite Jield, then 
rp = B(R(x, y)) for a power series in two variables R(x, y) that represents 
a rational function of x and y. 

Proof. Clearly we may suppose that the function v has no negative 
exponents in its expansion, since, in any case there are at most a finite 
number of these. By Proposition 1, we may express IJI in terms of a function # 
which again may be assumed to possess no negative exponents, and which 
satisfies (11). The function +(x) - I/J(O) satisfies an equation of the same 
form, and, moreover, satisfies the conditions of Proposition 2. Hence 
t)(t) - #(O) is the diagonal of a rational function, and it follows immediately 
that the same is true for p. 

4. PROOF OF THEOREM A 

Now let v(x) = Czm a,xn and #(x) = CZ, b,xn be two algebraic functions 
in K((x)), K a finite field. By Theorem 2, 

91 = ~@(xt YN, # = %S(% w)), 

where R(x, y), S(z, w) are rational functions. Form the function of four 
variables H(x, y, z, w) = R(x, y)S(z, w) and let 0 denote its diagonal. It is 
clear that O(t) = C”m a,b,tn. But by Theorem 1, 8(t) is an algebraic function, 
and this proves Theorem A. 

Perhaps the main significance of these results is in pointing to what still 
remains to be done in the classical case of the complex field. Specifically, 
one would like to know which analytic functions occur as diagonals of 
rational functions of several variables. Since these are precisely the algebraic 
functions in the case of a finite field, they cannot be devoid of interest in the 
complex case. The integral in (4) indicates that, at least in certain cases, they 
are tied up with automorphic functions. 
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